Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY Paper 4 Theory (Extended) October/November 2021 1 hour 15 minutes 0620/42 You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. | 1 | This | question | is | about | states | of | matter | |---|-------|----------|----|-------|--------|--------|--------| | | 11110 | quodion | | about | oluloo | \sim | HIGH | | (a) | Complete the table, | using ticks (🗸) |) and crosses (x | (), to describe the | e properties of | gases, li | iquids | |-----|---------------------|-----------------|--------------------------|---------------------|-----------------|-----------|--------| | | and solids. | | | | | | | | state of matter | particles
are touching | particles have random movement | particles are regularly arranged | |-----------------|---------------------------|--------------------------------|----------------------------------| | gas | | | | | liquid | | | | | solid | | | | | | | | [3 | |-----|------|--|-----| | (b) | Sul | ostances can change state. | | | | (i) | Boiling and evaporation are two ways in which a liquid changes into a gas. | | | | | Describe two differences between boiling and evaporation. | | | | | 1 | | | | | 2 | [2] | | | (ii) | Name the change of state when: | | | | | a gas becomes a liquid | | | | | a solid becomes a gas. | | | | | | [2 | (c) A substance boils at temperature X and melts at temperature Y. Complete the graph to show the change in temperature over time as the substance cools from temperature ${\bf A}$ to temperature ${\bf B}$. (d) A solution is a mixture of a solute and a solvent. | (i) Name the process when a solid substance mixes with a solvent to form a soluti | tion. | |---|-------| |---|-------| |--| | (ii) Name the type of reaction when two solutions react to form an insoluble sub | substance | uble s | insolu | an | form | to | react | olutions | two | when | f reaction | type of | Name the | (ii) | |--|-----------|--------|--------|----|------|----|-------|----------|-----|------|------------|---------|----------|------| |--|-----------|--------|--------|----|------|----|-------|----------|-----|------|------------|---------|----------|------| |
[1] | |---------| [Total: 11] [2] | Acids a | re important laboratory chemicals. | |----------------|---| | (a) Soi | me acids completely dissociate in water to form ions. | | (i) | State the term applied to acids that completely dissociate in water. | | | [1] | | (ii) | Complete the equation to show the complete dissociation of sulfuric acid in water. | | | $H_2SO_4 \rightarrow \dots$ [2] | | (iii) | State the colour of methyl orange in sulfuric acid. | | | [1] | | (b) The | e equation for the reaction between powdered zinc carbonate and dilute nitric acid is shown. | | | $ZnCO_3$ + $2HNO_3$ \rightarrow $Zn(NO_3)_2$ + H_2O + CO_2 | | (i) | Complete the equation by adding state symbols. [2] | | (ii) | A student found that 2.5 g of zinc carbonate required 20 cm ³ of dilute nitric acid to react completely. | | | Calculate the concentration of dilute nitric acid using the following steps: | | | calculate the mass of 1 mole of ZnCO₃ | | | • calculate the number of moles of ZnCO ₃ reacting | | | determine the number of moles of HNO₃ reacting | | | calculate the concentration of HNO₃. | | | mol/dm³
[4]
[Total: 10] | | | [Total: To] | - 3 Atoms contain protons, neutrons and electrons. - (a) Complete the table to show the relative mass and the relative charge of a proton, a neutron and an electron. | | relative mass | relative charge | |----------|------------------|-----------------| | proton | | | | neutron | | | | electron | <u>1</u>
1840 | | [3] **(b)** The table shows the number of protons, neutrons and electrons in some atoms and ions. Complete the table. | atom
or ion | number of protons | number of neutrons | number of electrons | |------------------|-------------------|--------------------|---------------------| | ³² S | | | | | ³⁹ K+ | | | | | | 35 | 44 | 36 | [5] [Total: 8] 4 Chlorine reacts with carbon monoxide to produce phosgene gas, $COCl_2(g)$. A catalyst is used. $$Cl_2(g) + CO(g) \rightleftharpoons COCl_2(g)$$ The reaction is exothermic. | (a) | bond making. | |-----|--------------| | | |[3 (b) (i) Complete the energy level diagram for this reaction. On your diagram show: - the product of the reaction - an arrow representing the energy change, labelled ΔH - an arrow representing the activation energy, labelled A. [3] (ii) State why a catalyst is used.[1] | (c) Describe and explain the effect, if any, on the position of equilibrium w | |---| |---| | the pressure is increased | | |-------------------------------|-----| | | | | | [2] | | the temperature is increased. | | (d) The reaction between chlorine and carbon monoxide can be represented as shown. $$Cl-Cl + CO \rightleftharpoons Cl$$ When one mole of chlorine reacts with one mole of carbon monoxide, 230 kJ of energy is released. Some bond energies are shown in the table. (ii) | bond | bond energy in kJ/mol | |-------|-----------------------| | C1-C1 | 240 | | C=O | 745 | | C-C1 | 400 | Use the information to calculate the energy of the bond between the C and the O in carbon monoxide, CO. bond energy in carbon monoxide, CO = kJ/mol [3] (e) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of ${ m COC}\,l_2$. Show outer electrons only. [3] [Total: 17] Iron is a transition element. Potassium is a Group I element. 5 | (a) | Iron | and potassium have the same type of bonding. | |-----|-------|--| | | Nar | ne and describe the type of bonding in these two elements. | | | nan | ne | | | des | cription | | | | | | | | | | | | [4] | | (b) | Trai | nsition elements and Group I elements have some similar physical properties. | | | The | y can both: | | | • | be hammered into a shape conduct electricity be stretched into wires. | | | (i) | Name the term used to describe the ability of elements to be hammered into a shape. [1] | | | (ii) | Describe what happens to the particles in iron when it is hammered into a shape. | | | | | | | | [1] | | (| (iii) | Suggest why copper, rather than other transition elements, is used for wires which conduct electricity. | | | | [1] | | (c) | Trai | nsition elements are harder and stronger than Group I elements. | | | | scribe how two other physical properties of transition elements are different from those of up I elements. | | | 1 | | | | 2 | [2] | [Total: 22] (d) Chemical properties of some Group I elements are shown in the table. | element | reaction with cold water | reaction with oxygen | flame test
colour | |-----------|---|----------------------------------|----------------------| | lithium | steadily effervescesforms a colourless solution | very slowly forms an oxide layer | red | | sodium | strongly effervescesforms a colourless solution | slowly forms an oxide layer | | | potassium | very strongly effervescesforms a colourless solution | quickly forms an oxide layer | | | rubidium | | | ruby red | | (i) | Add to the table: | | |----------|--|------------------| | | the flame test colours for sodium and potassium the predicted reactions of rubidium with water and with oxygen. | [4] | | (ii) | Name the gas produced when Group I elements react with water. | | | (iii) | Name the solution formed when potassium reacts with water. | | | (iv) | Predict the pH of the colourless solution formed when potassium reacts with water. | | | (v) | Write the chemical equation for the reaction of sodium with oxygen. | ניו | | | | [2] | | (e) Iron | is a typical transition element. It is the catalyst used in the Haber process. | | | (i) | Write the equation for the reaction that occurs in the Haber process. | [2] | | (ii) | State the temperature and pressure used in the Haber process. Include units. | [-] | | | temperature | | | | pressure |
[2] | | Etha | anol, C ₂ H ₅ OH, belongs to the homologous series called alcohols. | | |------|---|-----| | (a) | Write the general formula of alcohols. | | | | | [1] | | (b) | Explain why ethanol cannot be described as a hydrocarbon. | | | | | [1] | | (c) | Ethanol can be manufactured from different substances by reaction with steam or fermentation. | by | | | (i) Give the formula of the substance which reacts with steam to form ethanol. | | | | | [1] | | | (ii) Name a substance which will undergo fermentation to form ethanol. | | | | | [1] | | (d) | Ethanol is a fuel. | | | | Write the chemical equation for the complete combustion of ethanol. | | | | | [2] | (e) Ethane-1,2-diol has two alcohol functional groups. One molecule of ethane-1,2-diol will react with two molecules of ethanoic acid to form molecule \mathbf{X} . ${\bf X}$ has two ester functional groups and a molecular formula of ${\bf C}_6{\bf H}_{10}{\bf O}_4$. | (i) | State the | empirical | formula of X. | | |-----|-----------|-----------|---------------|--| |-----|-----------|-----------|---------------|--|[1] (ii) Draw the structure of X. Show all of the atoms and all of the bonds. | (iii) | Name the other substance formed in this reaction. | | |-------|--|-----| | | | [1] | - (f) Each alcohol functional group in ethane-1,2-diol reacts with acidified potassium manganate(VII) to form a different organic compound, Y. - (i) Name the functional groups formed in ${\bf Y}.$[1] (ii) Draw the structure of Y. Show all of the atoms and all of the bonds. [1] [2] [Total: 12] ## **BLANK PAGE** ## **BLANK PAGE** ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. The Periodic Table of Elements | | = | 2
He | helium
4 | 10 | Ne | neon
20 | 18 | Ar | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | Ru | radon | | | | |-------|---|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | = | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ğ | bromine
80 | 53 | Н | iodine
127 | 85 | Ą | astatine
- | | | | | | 5 | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Ъ | moloud – | 116 | | livermorium
– | | | > | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | Ξ | bismuth
209 | | | | | | ≥ | | | 9 | ပ | carbon
12 | 41 | S | silicon
28 | 32 | Ge | germanium
73 | 50 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | Fl | flerovium
– | | | = | | | 2 | В | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 18 | 11 | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | S | cadmium
112 | 80 | Hg | mercury
201 | 112 | ű | copernicium
- | | | | | | | | | | | | 59 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Αu | gold
197 | 111 | Rg | roentgenium
- | | dn | | | | | | | | | | 28 | ïZ | nickel
59 | 46 | Pq | palladium
106 | 78 | Ŧ | platinum
195 | 110 | Ds | darmstadtium
- | | Group | | | | | | | | | | 27 | ပိ | cobalt
59 | 45 | R | rhodium
103 | 77 | Г | iridium
192 | 109 | ¥ | meitnerium
- | | | | - I | hydrogen
1 | | | | | | | 26 | Ьe | iron
56 | 44 | Ru | ruthenium
101 | 9/ | Os | osmium
190 | 108 | £ | hassium | | | | | | , | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
— | | | | | | | loc | ISS | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | > | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | <u>R</u> | tantalum
181 | 105 | 9 | dubnium
– | | | | | | | ato | rela | | | | 22 | ı= | titanium
48 | 40 | Zr | zirconium
91 | 72 | 士 | hafnium
178 | 104 | 꿒 | rutherfordium
- | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ва | barium
137 | 88 | Ra | radium
- | | | _ | | | က | := | lithium
7 | 1 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | Rb | rubidium
85 | 55 | Cs | caesium
133 | 87 | Ē | francium
- | | 71
Lu | lutetium
175 | 103 | ۲ | lawrendum
- | | |-----------------|---------------------|-----|-----------|---------------------|--| | 70
Yb | ytterbium
173 | 102 | % | nobelium | | | ee
Tm | thulium
169 | 101 | Md | mendelevium
- | | | 88
Er | erbium
167 | 100 | Fm | fermium
- | | | 67
Ho | holmium
165 | 66 | Es | einsteinium
– | | | %
Dy | dysprosium
163 | 86 | ర | californium | | | es
Tb | terbium
159 | 26 | Ř | berkelium | | | 64
Gd | gadolinium
157 | 96 | Cm | curium | | | e3
Eu | europium
152 | 92 | Am | americium
- | | | 62
Sm | samarium
150 | 94 | Pu | plutonium | | | e1
Pm | promethium
- | 93 | ď | neptunium | | | 9 P N | neodymium
144 | 92 | \supset | uranium
238 | | | 59
Pr | praseodymium
141 | 91 | Ра | protactinium
231 | | | Se
Ce | cerium
140 | 06 | 드 | thorium
232 | | | 57
La | lanthanum
139 | 88 | Ac | actinium | | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).